Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior
نویسندگان
چکیده
منابع مشابه
A Tauberian Theorem for Laplace Transforms with Pseudofunction Boundary Behavior
The prime number theorem provided the chief impulse for complex Tauberian theory, in which the boundary behavior of a transform in the complex plane plays a crucial role. We consider Laplace transforms of bounded functions. Our Tauberian theorem does not allow first-order poles on the imaginary axis, but any milder singularities, characterized by pseudofunction boundary behavior, are permissibl...
متن کاملTauberian Theorems for Summability Transforms
we then write sn → s(A), where A is the A method of summability. Appropriate choices of A= [an,k] for n,k ≥ 0 give the classical methods [2]. In this paper, we present various summability analogs of the strong law of large numbers (SLLN) and their rates of convergence in an unified setting, beyond the class of random-walk methods. A convolution summability method introduced in the next section ...
متن کاملA Century of Complex Tauberian Theory
Complex-analytic and related boundary properties of transforms give information on the behavior of pre-images. The transforms may be power series, Dirichlet series or Laplace-type integrals; the pre-images are series (of numbers) or functions. The chief impulse for complex Tauberian theory came from number theory. The first part of the survey emphasizes methods which permit simple derivations o...
متن کاملTauberian theorems for sum sets
Introduction. The sums formed from the set of non-negative powers of 2 are just the non-negative integers. It is easy to obtain “abelian” results to the effect that if a set is distributed like the powers of 2, then the sum set will be distributed like Dhe non-negative integers. We will be concerned here with converse, or “Tauberian” results. The main theme of this paper is t’he following quest...
متن کاملNon commutative Laplace transforms, Hörmander’s type operators and local index theorems
The purpose of this work is to provide a general formalism for the study in small times of heat evolution semigroups associated to operators that can be written as sum of squares. We give a representation of such heat kernels as the averaging over the set of Brownian paths of the exponential of an infinite Lie series. The method we develop is an alternative to Itô’s theory of stochastic differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal d'Analyse Mathématique
سال: 2019
ISSN: 0021-7670,1565-8538
DOI: 10.1007/s11854-019-0045-3